skip to main content


Search for: All records

Creators/Authors contains: "Jeffreson, Sarah M. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We study the physical drivers of slow molecular cloud mergers within a simulation of a Milky Way-like galaxy in the moving-mesh code arepo, and determine the influence of these mergers on the mass distribution and star formation efficiency of the galactic cloud population. We find that 83 per cent of these mergers occur at a relative velocity below 5 km s−1, and are associated with large-scale atomic gas flows, driven primarily by expanding bubbles of hot, ionized gas caused by supernova explosions and galactic rotation. The major effect of these mergers is to aggregate molecular mass into higher-mass clouds: mergers account for over 50 per cent of the molecular mass contained in clouds of mass M > 2 × 106 M⊙. These high-mass clouds have higher densities, internal velocity dispersions and instantaneous star formation efficiencies than their unmerged, lower mass precursors. As such, the mean instantaneous star formation efficiency in our simulated galaxy, with its merger rate of just 1 per cent of clouds per Myr, is 25 per cent higher than in a similar population of clouds containing no mergers.

     
    more » « less
  2. ABSTRACT

    Connecting the gas in H ii regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H ii regions evolve over time. With PHANGS–MUSE, we detect nearly 24 000 H ii regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS–HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H ii regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the $\mathrm{H}\, \alpha$ equivalent width $\mathrm{EW}(\mathrm{H}\, \alpha)$, the $\mathrm{H}\, \alpha/\mathrm{FUV}$ flux ratio, and the ionization parameter, log q. As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, $\mathrm{EW}(\mathrm{H}\, \alpha)$ and log q show the most consistent trends and appear to be most reliable tracers for the age of an H ii region.

     
    more » « less